COMPUTER SUPPORT FOR THE RESTORATION OF UNDERGROUND CRITICAL INFRASTRUCTURE

THEY IM. C. KN38

THE MAN CHARLE TO THE TOWN ON THE TOWN OWN THE TOWN THE TOWN

Speaker:

Dr. Sc. (Tech.), Prof. Olha Starkova

The aim of the study is theoretical substantiation and development of a system of reasonable choice of organizational and technological solutions that ensure an increase in the operational life of sewer collectors, which is based on the principles of a systematic approach and takes into account the entire set of design, technical, organizational, technological and economic factors of functioning, repair and operation of the sewer network, and also allows you to ensure that the optimal solution according to the selected criterion is obtained, taking into account the available resources.

ILLUSTRATION OF THE DESTRUCTION OF UNDERGROUND INFRASTRUCTURES IN THE CITY OF KHARKOV

ORGANIZATION SYSTEM OF A COMPLEX OF SOLUTIONS FOR EXTENDING THE OPERATING LIFE OF A SEWER COLLECTOR

Results of studies of operating conditions (design, technical and operational parameters of the sewer)

Determining the categorization of a sewer collector

Determination of a set of possible organizational and technological solutions

Selection of organizational and technological solutions for the design, technical and operational parameters of the sewer

Selection of organizational and technological solutions based on technological and economic criteria

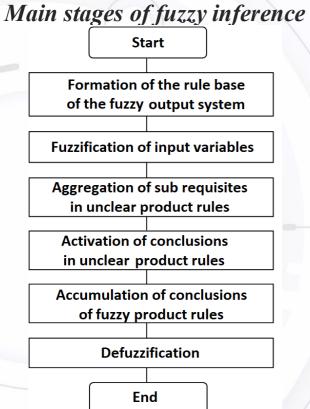
Cost opti	mization	Duration op	otimization	Lifetime of	otimization	Multiobjective optimization						
Choice of one	Choice of	Choice of one	Choice of	Choice of one	Choice of	Two-criteria	Three-criteria					
method	several	method	several	method	several	optimization	optimization					
	alternative		alternative		alternative							
	methods		methods		methods							

Evaluation of the effectiveness of the selected options for organizational and technological solutions

Taking into account the opinion of the decision maker

Choice of one organizational and technological solution

METHODOLOGICAL AND SOFTWARE TOOLS FOR DETERMINING THE CATEGORY OF SECTIONS OF SEWER COLLECTORS

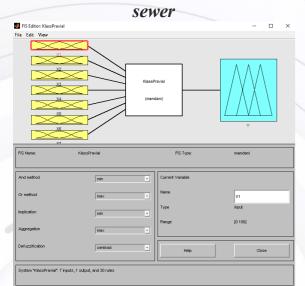

When determining the categorization of an object, it is advisable to consider the risk of an accident as one of the optimization criteria:

$$R(x) = P_x(H) \cdot P_x(U/H) \rightarrow \min_x$$

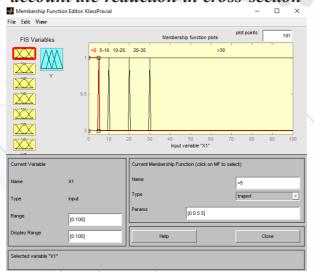
where x is the conditional serial number of the network section;

 $P_x(H)$ is the probability of an accident for section x;

 $P_x(U/H)$ is the probability of damage in the event of an accident for section x.

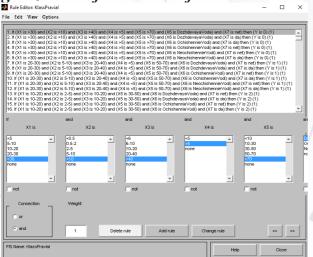

- 1. Formation of the rule base of fuzzy inference systems the representation of empirical knowledge or expert knowledge in the form of a finite set of fuzzy production rules. At the same time, in each of the fuzzy statements, the membership functions of the term-set values for each linguistic variable must be determined.
- 2. Fuzzification is a procedure for finding the values of the membership function of fuzzy sets (terms) based on ordinary (not fuzzy) input data.
- 3. Aggregation is a procedure for determining the degree of truth of conditions for each of the rules of the fuzzy inference system.
- 4. Activation is a procedure for finding the degree of truth of each of the subconclusions of the fuzzy production rules.
- 5. Accumulation is the procedure for finding the membership function for each of the output linguistic variables.
- 6. Defuzzification is a procedure for finding a normal (not fuzzy) value for each of the output linguistic variables.

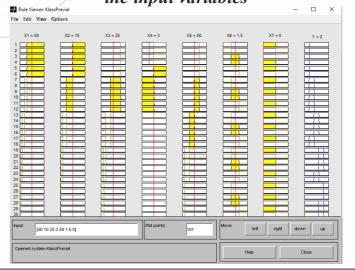
VARIABLES, TERM-SETS AND TERMS OF A COMPUTER MODEL FOR DETERMINING THE CATEGORY OF SEWER NETWORK SECTIONS


Variable	Term set	Index	Thermae	Description
		Incoming var	riables	
X1	Cross section reduction	Cross section reduction,%	[0;5] [5,1;10] [10.1;20] [20.1;30] [30.1;100]	not significant (from 0 to 5%) permissible (from 5 to 10%) medium (from 10 to 20%) maximum allowable (from 20 to 30%) critical (more than 30%)
X2	Presence of cracks	Crack (width), mm	[0;0.5] [0.6;2] [2,1;5] [5,1;10] [10.1;100]	not significant (from 0 to 0.5 mm) permissible (from 0.5 to 2 mm) medium (from 2 to 5 mm) maximum allowable (from 5 to 10 mm) critical (more than 10 mm)
Х3	Presence of deformation	Deformation,%	[0;6] [6,1;10] [10.1;20] [20.1;40] [40.1;100]	not significant (from 0 to 6%) permissible (from 6 to 10%) medium (from 10 to 20%) maximum allowable (from 20 to 40%) critical (more than 40%)
X4	The presence of a pipe rupture	Pipe rupture, cm	[0;5] [5;100]	critical (less than 5 cm) emergency (more than 5 cm)
X5	Presence of corrosion	Corrosion of reinforced concrete, %	[0;10] [10.1;30] [30.1;50] [50.1;70] [70.1;100]	not significant (from 0 to 10%) acceptable (from 10 to 30%) medium (from 30 to 50%) maximum allowable (from 50 to 70%) critical (more than 70%)
X6	Degree of wastewater pollution		[0;1] [1,1;2] [2,1;3]	rainwater pretreated wastewater untreated waste water
X7	Presence of wet soils along the pipelin	ne route	[0;0.5] [0.51;1]	No Yes
		Outgoing va	riable	
Y	Lot category	// (_)_	[0;1] [1,1;2] [2,1;3]	state class 0 - emergency state class 1 - pre-emergency state class 2 - critical
			[3,1;4] [4,1;5]	condition class 3 - not satisfactory condition class 4 - satisfactory

EXPERT SYSTEM FOR DETERMINING THE CATEGORY OF SECTIONS OF SEWER COLLECTORS

General view of the window F IS -editor of the MATLAB system for determining the categorization of sections of the


Description of the input variable that takes into account the reduction in cross-section

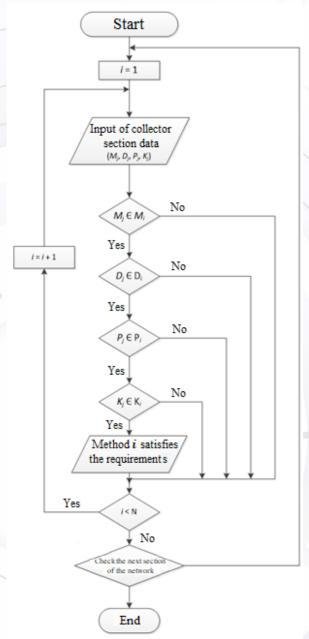

Description of the outgoing variable that determines the categorization of the

A fragment of the knowledge base for determining the categorization of a section of the sewer network

The result of the system operation based on the given values of the input variables

EVALUATION OF THE POSSIBILITY OF APPLICATION OF DIFFERENT METHODS OF REPAIR AND RESTORATION OF A SEWER MANIFOLD WITH A GIVEN CATEGORY OF ITS SECTIONS

Results of collection, processing and analysis of expert opinions


Experts

			1					2					3					4					5			The number of experts wh					
Method		St	ate clas	8			S	tate cla	88			S	tate clas	8			S	tate clas	8			S	tate clas	88		vote	d for t	he sta	ite cla	SS	
Number	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	
1				3	4			2	3	4				3	4			2	3	4			2	3	4			3	5	5	
2				3	4			2	3	4			2	3	4			2	3	4				3	4			3	5	5	
3			2	3	4			2	3	4				3	4				3	4			2	3	4			3	5	5	
4			2	3	4				3	4			2	3	4				3	4				3	4			2	5	5	
5			2	3	4				3	4				3	4			2	3	4			2	3	4			3	5	5	
6				3	4			2	3	4				3	4				3	4				3	4			1	5	5	
7				3	4			2	3	4				3	4				3	4			2	3	4			2	5	5	
8				3	4				3	4			2	3	4				3	4				3	4			1	5	5	
9	_			3	4			2	3	4				3	4				3	_				3	4			1	5	5	
10				3	4				3	4				3	4				3	_				3	4				5	5	
11			2	3	4				3	4				3	4			2	3	4			2	_	4			3	5	5	
12			2	3	4				3	4			2	3	4				3	4				3	4			2	5	5	
13	_		2	3				2	3				2	3				2	3	-			2	3				5	5	\square	
14		1	2			0	1	2				1	2				1	2	3			1	2	3		1	5	5	2		
15		1	2				1	2			0	1	2				1	2				1	2	3		1	5	5	1	\square	
16		1	2				1	2			0	1	2				1	2				1	2			1	5	5		\square	
17	0	1	2				1	2				1	2				1	2				1	2	3		1	5	5	1	\square	
18		1	2			0	1	2				1	2				1	2				1	2			1	5	5			

The possibility of applying repair and restoration methods for various categories of sections of the sewer network based on the expertise

Method No.	Status class	Method No.	Status class
1	3, 4	10	3, 4
2	3, 4	11	3, 4
3	3, 4	12	3, 4
4	3, 4	13	2, 3
5	3, 4	14	1, 2
6	3, 4	15	1, 2
7	3, 4	16	1, 2
8	3,4	17	1, 2
9	3,4	18	1, 2

ALGORITHMIC MODEL FOR A JUSTIFIED CHOICE OF THE METHOD OF REPAIR AND RECOVERY OF A SECTION OF THE SEWER COLLECTOR

Legend:

i is the number of the repair method, $i = \overline{1, N}$;

N is the number of repair methods under consideration;

j is the number of the sewer section, $j = \overline{1,Z}$;

Z is the number of sections of the sewer network;

Mi is the material for which method i can be applied;

Di is the diameter for which method i can be applied;

Pi is the length for which method i can be applied;

Ki – categorization for which the i method can be applied;

Mj – material of the collector section j;

Dj – diameter of the collector section j;

Pj – length of the collector section j;

Kj – categorization of the collector section j.

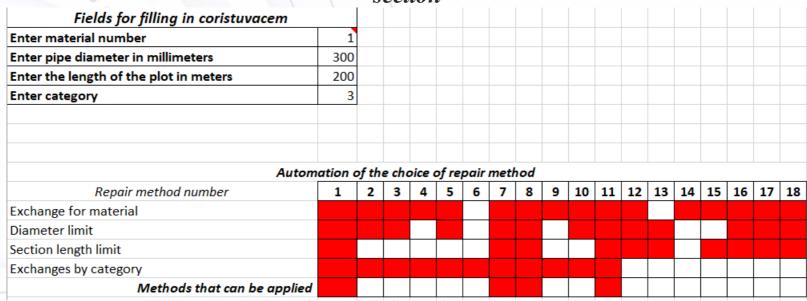
SOFTWARE TOOLS FOR THE IMPLEMENTATION OF AN ALGORITHMIC MODEL OF A JUSTIFIED CHOICE OF THE METHOD OF REPAIR AND RECOVERY OF A SECTION OF THE SEWER MANIFOLD

Variables, term-sets and terms of the expert system for a reasonable choice of the method of repair and restoration of a section of the sewer network

Variable	term set	Thermae	Description
1	2	3	4
K1	Sewer section material	[0;1] [1,1;2] [2,1;3]	reinforced concrete ceramics steel
		[3,1;4] [4,1;5]	cast iron asbestos
K2	Sewer section diameter	[0;49] [50;299] [300;599] [600;999] [1000;3600]	up to 50 mm 50-300 mm 300-600 mm 600-1000 mm over 1000 mm
К3	Sewer section length	[0;24] [25;49] [50;299] [300;599] [600;1000]	up to 25 m 25-50 m 50-300 m 300-600 m over 600 m
K4	Categorization (state class) of the sewer section	[0;1] [1,1;2] [2,1;3] [3,1;4] [4,1;5]	state class 0 - emergency state class 1 - pre-emergency state class 2 - critical condition class 3 - not satisfactory condition class 4 - satisfactory
		ng variables	
M1	Methods of repair and restoration of the sewer	[0;1]	method 1
M2		[0;1]	method 2
M3		[0;1/]	method 3
M17		[0;1]	method 17
M18		[0;1]	method 17
17110		[[0,1]	memod 10

THE RESULT OF THE SYSTEM OF REASONABLE SELECTION OF THE METHOD OF REPAIR AND RECOVERY OF THE SECTION OF THE SEWER COLLECTOR BASED ON THE SET VALUES OF THE INCOMING VARIABLES

IMPLEMENTATION OF ALGORITHMIC MODEL


Workspace for user entry of input parameters of the sewer section and automated selection of repair methods

The area of automated selection of the method of repair and restoration of the sewer section

Fields for filling in coristuvacem	1 - sast sansvete
Enter material number	1 - cast concrete 2 - ceramics
Enter pipe diameter in millimeters	3 - steel
Enter the length of the plot in meters	4 - cast iron
Enter category	5 - asbestos

Autom	Automation of the choice of repair method																	
Repair method number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Exchange for material																		
Diameter limit																		
Section length limit																		
Exchanges by category																		
Methods that can be applied																		

Recommendations for choosing a repair method, taking into account all the parameters of the sewer section

MATHEMATICAL MODELS OF SINGLE-CRITERIA OPTIMIZATION UNDER THE CONDITION OF SELECTING A SINGLE METHOD FOR REPAIRING A SECTION OF THE SEWER COLLECTOR

$$\sum_{i=1}^{n} c_{i} \cdot l \cdot x_{i} \rightarrow min, \qquad \sum_{i=1}^{n} t_{i} \cdot l \cdot x_{i} \rightarrow min, \qquad \sum_{i=1}^{n} z_{i} \cdot x_{i} \rightarrow max,
\begin{cases}
x_{i} \in \{0;1\}, \quad i = \overline{1,n}; \\
\sum_{i=1}^{n_{i}} x_{i} = 1; \\
c_{i} \in C_{i_{k}}, \quad k = \overline{1,m},
\end{cases} \qquad (1) \begin{cases}
x_{i} \in \{0;1\}, \quad i = \overline{1,n}; \\
\sum_{i=1}^{n_{i}} x_{i} = 1; \\
t_{i} \in T_{i_{k}}, \quad k = \overline{1,m},
\end{cases} \qquad (2) \begin{cases}
x_{i} \in \{0;1\}, \quad i = \overline{1,n}; \\
\sum_{i=1}^{n_{i}} x_{i} = 1; \\
z_{i} \in Z_{i_{k}}, \quad k = \overline{1,m},
\end{cases} \qquad (3)$$

- where (1) a mathematical model in which the optimization criterion is the cost of producing a complex of repair works;
 - (2) is a mathematical model in which the optimization criterion is the duration of the production of a complex of repair works;
 - (3) is a mathematical model in which the period of trouble-free operation is the optimization criterion;
 - i number of repair and restoration method; i = 1, ..., n;
 - *n* is the number of repair methods;
- c_i cost a complex of repair works (including the cost of materials and the cost of performing work) for 1 lin. m sewer collector i -th method;
 - t_i duration complex of repair works for 1 lin. m sewer collector i -th method;
 - z_i- the period of subsequent trouble-free operation, subject to the repair of the sewer collector by the i-th method;
 - l length of the repaired section, m;
 - x_i is a logical variable that reflects the choice of the i-th repair method:

- $x_i = \begin{cases} 1, & \text{if the repair method } i \text{ is selected} \\ 0, & \text{in the opposite situation} \end{cases}$
- C_{i_k} cost characteristics of a set of repair methods i that can be applied on the site, depending on its design, technical and operational parameters k;
- T_{i_k} characteristics of the duration of a set of repair methods that can be applied on the site, depending on its design, technical and operational parameters k;
- Z_{i_k} characteristics of the subsequent trouble-free operation of a variety of repair methods that can be applied on the site, depending on its design, technical and operational parameters k;
 - m the number of repair methods that can be applied on the site, depending on its design, technical and operational parameters.

MATHEMATICAL MODELS OF SINGLE-CRITERIA OPTIMIZATION UNDER THE CONDITION OF THE CHOICE OF SEVERAL METHODS OF REPAIRING A SECTION OF THE SEWER COLLECTOR

$$\sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{j} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot x_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot l_{ij} \cdot l_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot l_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \cdot l_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \rightarrow min,$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} \cdot l_{ij} \rightarrow min,$$

- where (1) the mathematical model in which the optimization criterion is the cost of producing a complex of repair works;
 - (2) the mathematical model in which the optimization criterion is the duration of the production of a complex of repair works;
 - (3) the mathematical model in which the period of trouble-free operation is the optimization criterion;
 - i number of repair and restoration method; i = 1, ..., n;
 - *n* number of repair methods;
 - j number of the sewer collector section; j = 1, ..., m;
 - *m* the number of sections of the sewer collector to be repaired;
 - c_{ij} cost a complex of repair works (including the cost of materials and the cost of performing work) for 1 lin. m section j sewer collector i -th method;
 - t_{ij} duration complex of repair works for 1 lin. m section j sewer collector i -th method;
 - z_{ij} period of subsequent trouble-free operation, subject to the repair of section j of the sewer collector by the i -th method;
 - l_j the length of the repaired section j, m;
 - x_i is a logical variable that reflects the choice of the i -th repair method:

- $x_i = \begin{cases} 1, & \text{if the repair method } i \text{ is selected} \\ 0, & \text{in the opposite situation} \end{cases}$
- C_{ij_k} cost characteristics of a set of repair methods i that can be applied on site j depending on its design, technical and operational parameters k;
- T_{ij_k} duration characteristics of multiple repair methods i, which can be applied on section j depending on its design, technical and operational parameters k.
- Z_{ij_k} characteristics of the subsequent trouble-free operation of a set of repair methods i that can be applied on site j depending on its design, technical and operational parameters k;
 - p is the number of repair methods that can be applied on the site, depending on its design, technical and operational parameters.

MATHEMATICAL MODELS OF MULTI-CRITERIA OPTIMIZATION FOR SOLVING THE PROBLEM OF SELECTING THE METHOD FOR REPAIRING A SECTION OF THE SEWER COLLECTOR

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \left(v_{c}(c_{ij} \cdot l_{j}) + v_{t}(t_{ij} \cdot l_{j}) \right) x_{ij} \rightarrow \min, \qquad \sum_{i=1}^{n} \sum_{j=1}^{m} \left(v_{c}(c_{ij} \cdot l_{j}) + v_{t}(t_{ij} \cdot l_{j}) - v_{z} \cdot z_{ij} \right) x_{ij} \rightarrow \min,
\begin{cases}
x_{ij} \in \{0;1\}, & i = \overline{1,n}, & j = \overline{1,m}; \\
\sum_{j=1}^{n_{i}} x_{ij} = 1, & i = \overline{1,n}; \\
c_{ij} \in C_{ij_{k}}, t_{ij} \in T_{ij_{k}}, & k = \overline{1,p},
\end{cases}$$

$$(1)$$

$$\begin{cases}
x_{ij} \in \{0;1\}, & i = \overline{1,n}, & j = \overline{1,m}; \\
\sum_{j=1}^{n_{i}} x_{ij} = 1, & i = \overline{1,n}; \\
c_{ij} \in C_{ij_{k}}, t_{ij} \in T_{ij_{k}}, z_{ij} \in Z_{ij_{k}}, & k = \overline{1,p},
\end{cases}$$

- where (1) the mathematical model of two-criteria optimization in terms of cost and duration of a complex of repair works;
- (2) the mathematical model of three-criteria optimization in terms of cost, duration of a complex of repair work and the period of subsequent trouble-free operation;

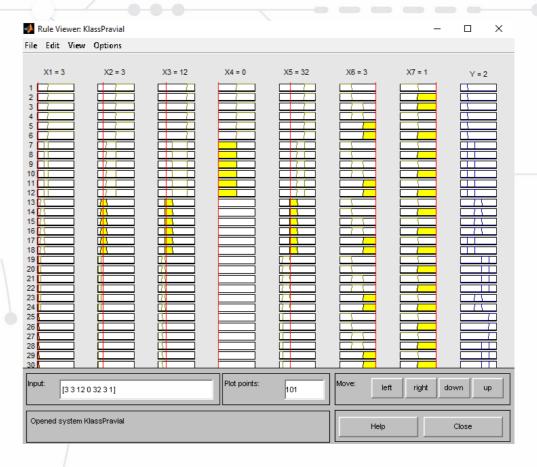
v_c - weight coefficient from the cost of work;

v_t - weight coefficient of the duration of work;

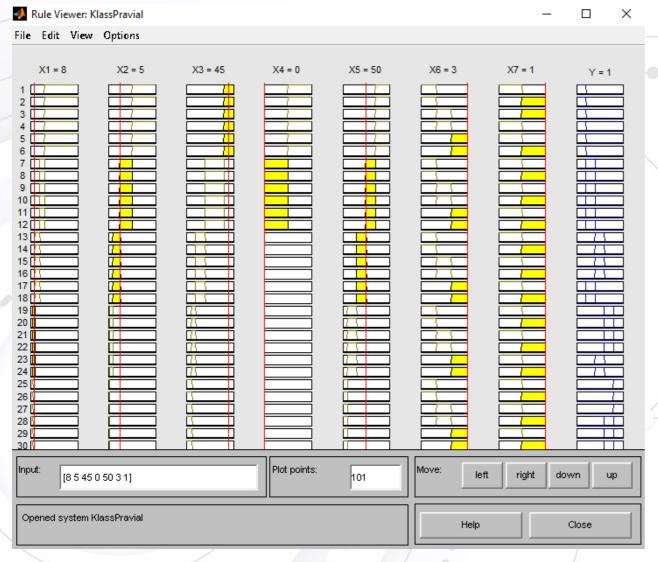
 v_z - weighting factor for the period of subsequent trouble-free operation.

The weighting factors are calculated as follows:

$$v = \left| \frac{1}{a_b - a_w} \right|,$$


a _b - the best value of the criterion indicator;

 a_w - the worst value of the criterion indicator.


Collector damage

Damage	Place	Characteristic
	Plot 1	
Cross-section reduction		3 %
Crack	Arch	2.8 mm
Deformation	Arch	12 %
Corrosion	Arch	32 %
	Plot 2	
Cross-section reduction		8 %
Crack	Arch	1.4 mm
Deformation	Arch	6 %
Corrosion	Arch	21 %
	Plot 3	
Cross-section reduction		3 %
Crack	Arch	0.9 mm
Deformation	Arch	2 %
Corrosion	Arch	5 %
	Plot 4	
Cross-section reduction		5 %
Crack	Arch	1.2 mm
Deformation	Arch	45 %
Corrosion	Arch	30 %
	Plot 5	
Cross-section reduction		5 %
Deformation	Arch	25 %
Corrosion	Arch	38 %
	Plot 6	
Cross-section reduction		20 %
Crack	Arch	5.0 mm
Deformation	Arch	20 %
Corrosion	Arch	50 %
	Plot 7	
Deformation	Arch	25 %
Corrosion	Arch	34 %

Categorization of the first section

General categorization of the reservoir under consideration

Categorization of plots and general categorization of the reservoir

Lot number	Plot	General
	categorization	categorization
1	2	
2	3	
3	4	
4	2	1
5	2	
6	1	
7	2	

JUSTIFICATION OF THE CHOICE OF THE METHOD OF REPAIR AND RESTORATION OF THE SECTION OF THE SEWER COLLECTOR

Fields for filling in coristuvacem

Recommendations for choosing repair methods when the manifold is considered as a whole

1																	
600																	
236																	
1																	
ation o	of th	e ch	oice (of re	pair	metl	nod										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	236	236 1	236 1	236 1	236 1 nation of the choice of re	236 1 nation of the choice of repair	236 1 nation of the choice of repair meth	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 nation of the choice of repair method	236 1 1 nation of the choice of repair method

Recommendations for choosing repair methods for the first section of the collector

Fields for filling in coristuvacem		.,																
Enter material number	1																	
Enter pipe diameter in millimeters	600																	
Enter the length of the plot in meters	50,8																	
Enter category	2																	
Auton	nation	of th	e ch	oice	of re	pair	meti	hod										
Repair method number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Exchange for material																		
Diameter limit																		
Section length limit																		
Exchanges by category																		
Methods that can be applied																		

Summarized information on the recommended methods of repair and restoration of the collector

Lot	Numbers of	Numbers of recommended
number	Recommended	methods if the collector is
7	Methods	considered as a whole
1	11, 12, 16, 17, 18	
2	1, 2, 3, 5, 8, 10, 11	
3	1, 2, 3, 5, 8, 10	
4	11, 12, 16, 17, 18	12, 16
5	11, 12, 16, 17, 18	
6	12, 16, 17, 18	
7	11, 12, 16, 17, 18	

APPLICATION OF MATHEMATICAL MODELS OF SINGLE-CRITERIA OPTIMIZATION UNDER THE CONDITION OF SELECTING A SINGLE REPAIR METHOD FOR A SEWER COLLECTOR

Technological and economic characteristics of the methods of repair and restoration of the sewer

No	Repair method	The cost of work for 1 lin.	The duration of work for 1	Period of trouble-free
		m, UAH	run. m, working shifts	operation, years
1	Method Supersilic	853.4	0.35	10
2	Centri method	953.8	0.56	10
3	Injection method	783.6	0.48	8
4	ZM Method	1053.6	0.42	10
5	The Tate method	956.4	0.32	10
6	Sitchoment Method	896.4	0.45	10
7	Preload method	645.9	0.39	10
8	Method "Stelvord"	876.2	0.46	12
9	Method "Hydrozan"	1059.4	0.59	15
10	Epoxy resin application	987.6	0.49	15
11	Setriline method	856.2	0.50	10
12	Method "Incoment"	1268.3	0.65	15
13	PF method	1687.5	0.36	10
14	PR Method	1965.8	0.47	40
15	PM Method	1985.3	0.67	45
16	Relining method	2165.8	0.37	50
17	Insituform method	859.4	0.60	15
18	Eterling method	2059.3	0.68	45

THE RESULT OF SOLVING THE PROBLEM OF COST OPTIMIZATION

No. of the lot	1	2	3	4	5	6	7												
material				1		•													
diameter, mm				600				The leng	th of the	plot									
length, m	50,8	52,9	51	32,9	21	15,9	11,1	235,6	m										
category	2	3	4	2	. 2	1	2	2											
total collector category	1																		
								Nun	bers of r	epair me	thods								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Methods that can be applied											+	+				+	+	+	
Cost of work for 1 linear meter,											056.20	1260.20				24.65.00	050.40	2050.20	
UAH											830,20	1268,30				2165,80	859,40	2059,30	
									Select	method									Methods collecte
Choice of method (so(1)/no(0))	0	0	() (0	0	C	0	0	0	0	1	0	0	0	0	0	C	1
Total cost, UAH	0	0	() () C	0	C	0 0	0	0	0	298811	0	0	0	0	0	C	
Purpose function, UAH	298 8	11,48																	
method number	12																		
Total duration, working shifts	153,14																		
The term of trouble-free operation, life	15																		

APPLICATION OF MATHEMATICAL MODELS OF SINGLE-CRITERIA OPTIMIZATION UNDER THE CONDITION OF THE CHOICE OF DIFFERENT REPAIR METHODS FOR SECTIONS OF THE SEWER COLLECTOR

The result of the search for a solution to the problem of single-criteria cost optimization, subject to the choice of different repair methods for reservoir sections

				J	<i>JJ</i>		1													
No. of the lot	1	2	3	4	5	6	7													
material				1																
diameter, mm				600																
length, m	50,8	52,9	51	32,9	21	15,9	11,1													
category	2	3	4	2	2	1	2													
								Num	pers of rep	air metho	ods for the	e lot 1								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Methods that can be applied	_						•				+	+				+	+	+		
Cost of work for 1 linear meter, UAH											856,20	1268,30				2165,80	859,40	2059,30		
																			Methods	collected
Choice of method (so(1)/no(0))	0	0	0	0	0	0	0	0	0	0	1	. 0	0	0	0		0	0	1	
Total cost, UAH	0	0	0	0	0	0	0	0	0	0	43495	0	0	0	0	0	0	0		
The cost of work on lot 1, UAH	43495,0																			
								Num	pers of rep	pair metho	ods for the									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Methods that can be applied	+	+	+		+			+		+	+									
Cost of work for 1 linear meter, UAH	853,40	953,80	783,60		956,40			876,20		987,60	856,20									
																			Methods	collected
Choice of method (so(1)/no(0))	0		1	0	0	0							0	0				0	1	
Total cost, UAH	0	0	41452	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
The cost of work on lot 2, UAH	41452,4																			
								Numl	ers of rep	air metho	ods for the	e lot 7								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Methods that can be applied											+	+				+	+	+		
Cost of work for 1 linear meter, UAH											856,20	1268,30				2165,80	859,40	2059,30		
																			Methods	collecte
Choice of method (so(1)/no(0))	0	0	0	0	0	0	0	0	0			. 0							1	
Total cost, UAH	0	0	0	0	0	0	0	0	0	0	9503,8	0	0	0	0	0	0	0		
The cost of work on lot 7, UAH	9503,8																			
Purpose function, UAH	194 2	28.46																		
Purpose function, UAH	194 2	28,46			/															

GENERAL RECOMMENDATIONS FOR THE SELECTION OF METHODS OF REPAIR AND RECOVERY OF THE SEWER COLLECTOR

No. of the lot	1	2	3	4	5	6	7									
material				1												
diameter, mm	E0.9 E2.0 E1			600												
length, m	50,8	52,9	51	32,9	21	15,9	11,1									
category	2	3	4	2	2	1	2									
Collector category	1															
Head length of the collector, m	235,6															
Collector	is viewed as a sir	ngle unit (d	alternative	A ¹)				A sele	ection of a	lifferent me	thods for a	ollector sec	tions (alter	native A ²)		
Cost optimization (alternative A ¹ c)			Durati	on optimizat	ion (alterna	tive A ¹ _t)				Cost opt	imization (alternative	A ² _c)			
Total cost, UAH	298 811,48		Total du	ıration, work	ing shifts		87,17	plot number	1	2	3	4	5	6	7	
method number	12			nethod numb	_		16	method number	11	3	3	11	11	17	11	
Total duration, working shifts	153,14		1	otal cost, UA	λΗ		510 262,48		To	otal repair co	ost, UAH			1942	28,46	
The term of trouble-free operation, year	15	Th		rouble-free o		ear	50			epair time, v		ts			7,31	
Optimization of the term for trouble-free	operation (alter	native A ¹ ,)					Ave	rage term	for trouble-	free operat	ion, year		10	0,1	
The term of trouble-free operation, year	50									Duration o			ve A ² _t)			
method number	16							method number	16	5	5	16	16	16	16	
Total cost, UAH	510 262,48								Total r	epair time, v	vorking shif	ts		81	,98	
Total duration, working shifts	87,17									otal repair co				384605,82		
								Ave	rage term	for trouble-	free operat	ion, year		38,6		
								Opti	imization	of the term	for trouble	-free opera	ation (altern	native A ² ,)		
								method number	16	10	10	16	16	16	16	
								Aver	rage term	for trouble-	free operat	ion, year	•	4	10	
									To	otal repair co	ost, UAH			387847,50		
									Total r	epair time, v	vorking shif	ts		99	,64	
The results of	multiobjective o	ptimizatio	on (alterna	tive A ³)												
Optimization fo	or two criteria (c	ost, durati	on) (altern	ative A ³ ct)												
No. of the lot	1	2	3	4	5	6	7									
method number	11	5	5	11	11	17	11									
Total repair cost, U	JAH				21218	32,38										
Total repair time, work	ng shifts				100	,69										
Average term for trouble-free	·				10,	71										
Optimization for thom	a criteria (cost, d	duration, d	operation)	(alternative	A ³ ctz)											
method number	16	5	5	16	16	16	16									
Total repair cost, U	JAH				38460	05,82										
Total repair time, work	ng shifts				81,	98										
Average term for trouble-free	oneration year				38	•										

COMPUTER SUPPORT FOR THE RESTORATION OF UNDERGROUND CRITICAL INFRASTRUCTURE

The proposed choices are divided into alternatives, which are assigned letter designations in the following order: alternatives A^{I} - options for carrying out repair work, obtained as a result of solving problems of single-criteria optimization, subject to the choice of one repair method, and the alternative:

- $A^{-1}c$ solution variant obtained as a result of cost optimization;
- A_{t}^{-1} solution variant obtained as a result of duration optimization;
- A_z^{l} is a solution option obtained as a result of optimizing the period of subsequent operation;

alternatives A^2 - options for carrying out repair work, obtained as a result of solving problems of single-criteria optimization, subject to the choice of different repair methods, and the alternative:

- A^{2}_{c} solution variant obtained as a result of cost optimization;
- A^{2}_{t} solution variant obtained as a result of duration optimization;
- A^2 is a solution option obtained as a result of optimizing the period of subsequent operation;

alternatives A³ - options for carrying out repair work, obtained as a result of solving problems of multi-criteria optimization, subject to the choice of different repair methods, and the alternative:

- A^{3} _{ct} solution variant obtained as a result of cost and duration optimization;
- A 3 ctz is a solution option obtained as a result of optimization according to three criteria (cost, duration, period of subsequent operation).

Analysis of the main indicators of the selected repair methods for alternative options for solving optimization problems

Alternatives	Total repair cost, UAH	Total repair time, working shifts	Average term for trouble-free operation, year
A ¹ _c	298 811,48	153,14	15
A ¹ _t	510 262,48	87,17	50
A ¹ _z	510 262,48	87,17	50
A ² _c	194 228,46	117,31	10,1
A ² _t	384 605,82	81,98	38,57
A ² _z	387 847,50	99,64	40
A ³ ct	212 182,38	100,69	10,71
A ³ _{ctz}	384 605,82	81,98	38,6
Best showing value	194 228,46	81,98	50
Alternative	A ² _c	A_{t}^{2} A_{ctz}^{3}	A_t^1 A_z^1

COMPARISON OF THE MAIN INDICATORS OF THE ALTERNATIVES WITH THE BEST VALUE OF EACH INDICATOR

Alternatives	Cost deviation from the best value	Duration deviation from the best value	Service life deviation from the best value
A ¹ _c	35%	46%	70%
A ¹ _t	62%	6%	the best
A ¹ _z	62%	6%	the best
A ² _c	the best	30%	80%
A ² _t	49%	the best	23%
A ² _z	50%	18%	20%
A ³ _{ct}	8%	19%	79%
A^3_{ctz}	49%	the best	23%

The comparison made allows us to conclude that the deterioration of the main indicators of the complex of repair works varies according to:

total cost - in the range from 8 to 62%;

total duration - in the range from 6 to 46%;

the average period of subsequent trouble-free operation - in the range from 20 to 80%.

ECONOMIC EFFICIENCY ASSESSMENT OF THE USE THE ALTERNATIVE OPTIONS FOR REPAIRING THE SEWER COLLECTOR

Alternatives	Total repair cost,	Estimated economic effect				
Aitemutives	UAH	UAH	at %			
A ¹ _c	298811,48	35850,00	12,00			
A ¹ _t	510262,48	55066,10	10,79			
A ¹ _z	510262,48	55066,10	10,79			
A ² _c	194228,46	20302,55	10,45			
A ² _t	384605,82	51400,56	13,36			
A ² _z	387847,50	49005,10	12,64			
A ³ _{ct}	212182,38	25254,79	11,90			
A ³ ctz	384605,82	42400,65	11,02			

THANK YOU FOR YOUR ATTENTION